[meteorite-list] Martian Winds Carve Mountains, Move Dust, Raise Dust (MSL)

Ron Baalke baalke at zagami.jpl.nasa.gov
Fri Mar 3 18:05:12 EST 2017


https://www.jpl.nasa.gov/news/news.php?feature=6758

Martian Winds Carve Mountains, Move Dust, Raise Dust
Jet Propulsion Laboratory
February 27, 2017

Fast Facts:

* Wind is a dominant force shaping landscapes on Mars, despite the thin 
air.
* A recent study supports the idea that a mountain that is oddly in the 
middle of a Martian crater was formed by wind subtracting other material 
after the crater had been filled to the brim with sediments.
* Modern winds in the crater show effects such as dusty whirlwinds, shifting 
sand and active dunes.
* NASA's Mars rover Curiosity has begun investigating linear-shaped dunes 
during the crater's windy summer season.

On Mars, wind rules. Wind has been shaping the Red Planet's landscapes 
for billions of years and continues to do so today. Studies using both 
a NASA orbiter and a rover reveal its effects on scales grand to tiny 
on the strangely structured landscapes within Gale Crater.

NASA's Curiosity Mars rover, on the lower slope of Mount Sharp -- a layered 
mountain inside the crater -- has begun a second campaign of investigating 
active sand dunes on the mountain's northwestern flank. The rover also 
has been observing whirlwinds carrying dust and checking how far the wind 
moves grains of sand in a single day's time.

Gale Crater observations by NASA's Mars Reconnaissance Orbiter have confirmed 
long-term patterns and rates of wind erosion that help explain the oddity 
of having a layered mountain in the middle of an impact crater.

"The orbiter perspective gives us the bigger picture -- on all sides of 
Mount Sharp and the regional context for Gale Crater. We combine that 
with the local detail and ground-truth we get from the rover," said Mackenzie 
Day of the University of Texas, Austin, lead author of a research report 
in the journal Icarus about wind's dominant role at Gale.

The combined observations show that wind patterns in the crater today 
differ from when winds from the north removed the material that once filled 
the space between Mount Sharp and the crater rim. Now, Mount Sharp itself 
has become a major factor in determining local wind directions. Wind shaped 
the mountain; now the mountain shapes the wind.

The Martian atmosphere is about a hundred times thinner than Earth's, 
so winds on Mars exert much less force than winds on Earth. Time is the 
factor that makes Martian winds so dominant in shaping the landscape. 
Most forces that shape Earth's landscapes -- water that erodes and moves 
sediments, tectonic activity that builds mountains and recycles the planet's 
crust, active volcanism -- haven't influenced Mars much for billions of 
years. Sand transported by wind, even if infrequent, can whittle away 
Martian landscapes over that much time.

How to Make a Layered Mountain

Gale Crater was born when the impact of an asteroid or comet more than 
3.6 billion years ago excavated a basin nearly 100 miles (160 kilometers) 
wide. Sediments including rocks, sand and silt later filled the basin, 
some delivered by rivers that flowed in from higher ground surrounding 
Gale. Curiosity has found evidence of that wet era from more than 3 billion 
years ago. A turning point in Gale's history -- when net accumulation 
of sediments flipped to net removal by wind erosion -- may have coincided 
with a key turning point in the planet's climate as Mars became drier, 
Day noted.

Scientists first proposed in 2000 that the mound at the center of Gale 
Crater is a remnant from wind eroding what had been a totally filled basin. 
The new work calculates that the vast volume of material removed -- about 
15,000 cubic miles (64,000 cubic kilometers) -- is consistent with orbital 
observations of winds' effects in and around the crater, when multiplied 
by a billion or more years.

Other new research, using Curiosity, focuses on modern wind activity in 
Gale.

The rover this month is investigating a type of sand dune that differs 
in shape from dunes the mission investigated in late 2015 and early 2016. 
Crescent-shaped dunes were the feature of the earlier campaign -- the 
first ever up-close study of active sand dunes anywhere other than Earth. 
The mission's second dune campaign is at a group of ribbon-shaped linear 
dunes.

"In these linear dunes, the sand is transported along the ribbon pathway, 
while the ribbon can oscillate back and forth, side to side," said Nathan 
Bridges, a Curiosity science team member at the Johns Hopkins University 
Applied Physics Laboratory in Laurel, Maryland.

The season at Gale Crater is now summer, the windiest time of year. That's 
the other chief difference from the first dune campaign, conducted during 
less-windy Martian winter.

"We're keeping Curiosity busy in an area with lots of sand at a season 
when there's plenty of wind blowing it around," said Curiosity Project 
Scientist Ashwin Vasavada of NASA's Jet Propulsion Laboratory, Pasadena, 
California. "One aspect we want to learn more about is the wind's effect 
on sorting sand grains with different composition. That helps us interpret 
modern dunes as well as ancient sandstones."

Before Curiosity heads farther up Mount Sharp, the mission will assess 
movement of sand particles at the linear dunes, examine ripple shapes 
on the surface of the dunes, and determine the composition mixture of 
the dune material.

Shifting Sand and 'Dust Devils'

Images taken one day apart of the same piece of ground, including some 
recent pairs from the downward-looking camera that recorded the rover's 
landing-day descent, show small ripples of sand moving about an inch (2.5 
centimeters) downwind.

Meanwhile, whirlwinds called "dust devils" have been recorded moving across 
terrain in the crater, in sequences of afternoon images taken several 
seconds apart.

After completing the planned dune observations and measurements, Curiosity 
will proceed southward and uphill toward a ridge where the mineral hematite 
has been identified from Mars Reconnaissance Orbiter observations. The 
Curiosity science team has decided to call this noteworthy feature the 
"Vera Rubin Ridge," commemorating Vera Cooper Rubin (1928-2016), whose 
astronomical observations provided evidence for the existence of the universe's 
dark matter.

As Curiosity focuses on the sand dunes, rover engineers are analyzing 
results of diagnostic tests on the drill feed mechanism, which drives 
the drill bit in and out during the process of collecting sample material 
from a rock. One possible cause of an intermittent issue with the mechanism 
is that a plate for braking the movement may be obstructed, perhaps due 
to a small piece of debris, resisting release of the brake. The diagnostic 
tests are designed to be useful in planning the best way to resume use 
of the drill.

The rover team is also investigating why the lens cover on Curiosity's 
arm-mounted Mars Hand Lens Imager (MAHLI) did not fully open in response 
to commands on Feb. 24. The arm has been raised to minimize risk of windborne 
sand reaching the lens while the cover is partially open. Diagnostic tests 
of the lens cover are planned this week.

During the first year after Curiosity's 2012 landing in Gale Crater, the 
mission fulfilled its main goal by finding that the region once offered 
environmental conditions favorable for microbial life. The conditions 
in long-lived ancient freshwater Martian lake environments included all 
of the key chemical elements needed for life as we know it, plus a chemical 
source of energy that is used by many microbes on Earth. The extended 
mission is investigating how and when the habitable ancient conditions 
evolved into conditions drier and less favorable for life. For more information 
about Curiosity, visit:

http://www.nasa.gov/curiosity

News Media Contact
Guy Webster
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-6278
guy.webster at jpl.nasa.gov

Laurie Cantillo / Dwayne Brown
NASA Headquarters, Washington
202-358-1077 / 202-358-1726
laura.l.cantillo at nasa.gov / dwayne.c.brown at nasa.gov

2017-050 


More information about the Meteorite-list mailing list