[meteorite-list] Spacecraft Monitoring Martian Dust Storm

Ron Baalke baalke at zagami.jpl.nasa.gov
Fri Nov 23 18:41:43 EST 2012


http://www.jpl.nasa.gov/news/news.php?release=2012-365

Spacecraft Monitoring Martian Dust Storm
Jet Propulsion Laboratory
November 21, 2012

PASADENA, Calif. -- A Martian dust storm that NASA's Mars Reconnaissance 
Orbiter has been tracking since last week has also produced atmospheric 
changes detectable by rovers on Mars.

Using the orbiter's Mars Color Imager, Bruce Cantor of Malin Space 
Science Systems, San Diego, began observing the storm on Nov. 10, and 
subsequently reported it to the team operating NASA's Mars Exploration 
Rover Opportunity. The storm came no closer than about 837 miles (1,347 
kilometers) from Opportunity, resulting in only a slight drop in atmospheric 
clarity over that rover, which does not have a weather station.

Halfway around the planet from Opportunity, the NASA Mars rover Curiosity's 
weather station has detected atmospheric changes related to the storm. Sensors 
on the Rover Environmental Monitoring Station (REMS), which was provided 
for Curiosity by Spain, have measured decreased air pressure and a slight 
rise in overnight low temperature.

"This is now a regional dust storm. It has covered a fairly extensive region 
with its dust haze, and it is in a part of the planet where some regional 
storms in the past have grown into global dust hazes," said Rich Zurek, chief 
Mars scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif. "For the 
first time since the Viking missions of the 1970s, we are studying a regional 
dust storm both from orbit and with a weather station on the surface."

Curiosity's equatorial location and the sensors on REMS, together with the 
daily global coverage provided by the Mars Reconnaissance Orbiter, provide new 
advantages compared with what Viking offered with its combination of orbiters and 
landers. The latest weekly Mars weather report from the orbiter's Mars 
Color Imager is at http://www.msss.com/msss_images/2012/11/21/ .

Each Martian year lasts about two Earth years. Regional dust storms expanded 
and affected vast areas of Mars in 2001 and 2007, but not between those 
years nor since 2007.

"One thing we want to learn is why do some Martian dust storms get to this size 
and stop growing, while others this size keep growing and go global," Zurek said.

>From decades of observing Mars, scientists know there is a seasonal pattern to 
the largest Martian dust-storm events. The dust-storm season began just a few 
weeks ago, with the start of southern-hemisphere spring.

Starting on Nov. 16, the Mars Climate Sounder instrument on the Mars 
Reconnaissance Orbiter detected a warming of the atmosphere at about 16 miles 
(25 kilometers) above the storm. Since then, the atmosphere in the region has 
warmed by about 45 degrees Fahrenheit (25 degrees Celsius). This is due to the 
dust absorbing sunlight at that height, so it indicates the dust is being lofted 
well above the surface and the winds are starting to create a dust haze over a 
broad region.

Warmer temperatures are seen not only in the dustier atmosphere in the south, 
but also in a hot spot near northern polar latitudes due to changes in 
the atmospheric circulation. Similar changes affect the pressure measured 
by Curiosity even though the dust haze is still far away.

Besides the research value in better understanding storm behavior, monitoring the 
storm is also important for Mars rover operations. If the storm were to 
go global, the Opportunity rover would be affected most. More dust in 
the air or falling onto its solar panels would reduce the solar-powered 
rover's energy supply for daily operations. Curiosity is powered by a 
radioisotope thermoelectric generator, rather than solar cells. The main 
effects of increased dust in the air at its site would be haze in images 
and increased air temperature.

JPL, a division of the California Institute of Technology, Pasadena, manages the 
Mars Reconnaissance Orbiter Project and both of the Mars rover projects for NASA's 
Science Mission Directorate, Washington.

For more information about the missions of NASA's Mars Exploration 

Program, visit http://marsprogram.jpl.nasa.gov/ .

Guy Webster / D.C. Agle 818-354-5011
Jet Propulsion Laboratory, Pasadena, Calif.
Guy.Webster at jpl.nasa.gov / agle at jpl.nasa.gov

2012-365




More information about the Meteorite-list mailing list