[meteorite-list] Researchers Describe Discovery of Pluto's New Moons

Ron Baalke baalke at zagami.jpl.nasa.gov
Thu Feb 23 12:29:05 EST 2006



The Johns Hopkins University Applied Physics Laboratory
Office of Communications and Public Affairs
Laurel, Maryland

Media Contact: Michael Buckley
(240) 228-7536 or (443) 778-7536
Michael.buckley at jhuapl.edu

February 22, 2006

FOR IMMEDIATE RELEASE

RESEARCHERS DESCRIBE DISCOVERY OF PLUTO'S NEW MOONS

New Hubble Images Offer Best View yet of Distant Planet and its Three 
Satellites

In the Feb. 23 issue of the journal Nature, a team led by Dr. Hal Weaver of 
the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, 
Md., describes its discovery of two new moons around Pluto - a finding that 
made the ninth planet the first Kuiper Belt object known to have multiple 
satellites.

In a companion paper, discovery team members led by Dr. Alan Stern of the 
Southwest Research Institute, Boulder, Colo., conclude that the two small 
moons were very likely born in the same giant impact that gave birth to 
Charon. They also argue that large binary Kuiper Belt objects like 
Pluto-Charon may also have small moons accompanying them, and that Pluto's 
small moons may generate debris rings that orbit the planet.

The Kuiper Belt is a band of icy, rocky objects and dwarf planets that 
orbit the Sun in the outer region of our solar system, beyond the orbit of 
Neptune. It has been known since 1992; Pluto is its most prominent member.

Using the Hubble Space Telescope's Advanced Camera for Surveys, the team 
originally discovered the moons in two sets of Pluto observations in May 
2005. Their discovery was confirmed in new Hubble images taken Feb. 15 and 
released today.

"We used Hubble's exceptional resolution to peer close to Pluto and pick 
out two small moons that had eluded detection for more than 75 years," says 
Weaver, who also serves as project scientist for NASA's New Horizons 
mission, which is on track to make the first close-up reconnaissance of the 
Pluto system in 2015.

Pluto's previously known moon, Charon, was discovered in 1978, nearly half 
a century after Pluto's discovery in 1930. With diameters estimated to lie 
between 35 and 100 miles, the new moons, provisionally designated S/2005 P1 
and S/2005 P2, are roughly 10 times smaller than Charon. They're also about 
600 times fainter than Charon and 4,000 times fainter than Pluto, and 
hidden in the glare of nearby Pluto and Charon when viewed by ground-based 
optical telescopes. The scientists say this is the reason the moons evaded 
detection before Hubble looked for them.

The Weaver team writes in Nature that the satellites were easy to see in 
the Hubble pictures. "That was somewhat surprising because ground-based 
observers had been trying for more than a decade to find new satellites 
around Pluto," says Max Mutchler from the Space Telescope Science Institute 
in Baltimore, the first person to spot the moons in the May 2005 images. 
"But I felt almost certain even when I first saw them that they were real 
objects -- not any sort of artifact -- and that they were exhibiting 
orbital motion around Pluto."

That orbital motion -- inferred from the different locations of the moons 
in pictures taken May 15 and May 18 -- is what convinced scientists that 
they were indeed looking at moons and not stray light, cosmic rays or other 
Kuiper Belt objects that happened to be passing by.

"If we assumed the orbits were circular and in the same orbit plane as 
Charon, we could predict the exact positions of the objects on the second 
day," says Dr. William Merline, a co-author and discovery team member from 
Southwest Research Institute (SwRI). "When the objects on the second day 
appeared almost exactly where we predicted, we were convinced -- no two 
artifacts could follow the rules of orbital physics that 'real' objects 
must obey."

"The presence of the new moons in orbits with so many similarities to 
Charon's sheds light on the formation and evolution of the Pluto system, as 
well as on the process by which satellites are formed in the Kuiper Belt," 
says SwRI's Stern, who is principal investigator of the New Horizons mission.

The new moons will be important targets of New Horizons, which was launched 
Jan. 19 to provide the first detailed reconnaissance of Pluto and the 
Kuiper Belt. The New Horizons spacecraft will fly within several thousand 
miles of Pluto and its moons in July 2015.

Weaver says the APL-built Long Range Reconnaissance Imager (LORRI) 
telescopic camera on New Horizons should be able to probe the new moons and 
resolve surface features down to 600 yards wide. These observations build 
on primary mission science plans to characterize the global geology and 
geomorphology of Pluto and Charon, map their surface compositions and 
temperatures, and examine Pluto's atmospheric composition and structure. 
New Horizons also will map the two smaller satellites in color and 
black-and white, and map their surface compositions and temperatures.

"We're getting four fascinating targets for the price of two," says Weaver. 
"The opportunity to explore the 'bookends' of Kuiper Belt object size 
distribution, with Pluto and Charon at one end and P1 and P2 at the other, 
is an unexpected treat."

The team is already analyzing the new Hubble images, which confirm the 
results published in the Nature paper and provide the most detailed view 
yet of this fascinating mini solar system. Hubble is scheduled to take 
another set of Pluto images in early March.

"The more we learn about the orbits and physical properties of P1 and P2, 
the better we can fine-tune our spacecraft investigation and focus on the 
objectives that are impossible to achieve from Earth-based observations," 
says Stern.

The Hubble Pluto companion search team also includes Dr. Marc Buie of 
Lowell Observatory, Flagstaff, Ariz., and Dr. John Spencer, Dr. Eliot 
Young, Dr. Leslie Young and Dr. Andrew Steffl of Southwest Research 
Institute, Boulder. New Horizons is the first mission in NASA's New 
Frontiers Program of medium-class spacecraft exploration projects. Stern 
leads the mission and science team as principal investigator. APL manages 
the mission for NASA's Science Mission Directorate and is operating the 
spacecraft in flight.

On the Web:
Hubble/Pluto System images: http://hubblesite.org/news/2006/09
NASA's New Horizons mission: http://pluto.jhuapl.edu

--------------------------------------------------------------------------------

The Applied Physics Laboratory (APL) is a not for profit laboratory and 
division of The Johns Hopkins University. APL conducts research and 
development primarily for national security and for nondefense projects of 
national and global significance. For more information, visit 
http://www.jhuapl.edu




More information about the Meteorite-list mailing list